A Demo of AI Feedback in Pyrates: Supporting
Students’ Transition to Text-Based Programming

Anonymous

No Institute Given

Abstract. Learning programming can be especially challenging for high
school students transitioning from block-based to text-based environ-
ments. Serious games like Pyrates offer engaging learning opportunities
to do so, but students often require personalized support that busy K-
12 teachers might struggle to provide in a timely manner. This demo
presents our Al-augmented version of Pyrates, featuring an adaptive
feedback policy that predicts and delivers formative feedback based on
students’ in-game actions and code. Deployed in multiple high school
classes, this system addresses common difficulties in the game. We also
preview how LLMs can further enhance feedback personalization.

Keywords: Serous game - Feedback policy - Learning programming

1 Introduction

Pyrates (https://py-rates.org/)) [3] is a platformer-style serious game aimed
at introducing Python programming to 10th-grade students with prior block-
based coding experience. As such, it supports the critical transition from block-
based to text-based programming featured in many high school computer science
curricula [4]. Players control a pirate avatar by writing Python code to achieve
level-specific goals. Each of the levels introduces a novel programming concept
(e.g., loops, conditions, variables). Pyrates is meant to be exploratory and open-
ended, meaning that the fundamental programming concepts involved in each
of the levels are not explicit, but are made necessary by the game problems to
be solved, thus aligning with the constructivist learning paradigm [6]. Pyrates
is used on a rather large scale, with over 250,000 game sessions played to date.

The core of the demo is the integrated Al-driven adaptive feedback system
[1]. This system utilizes machine learning (ML) models trained on student data
(N=215), including their in-game actions and code, to predict the feedback type
that expert teachers (N=7) would provide in similar situations. The feedback
types are based on the well-established Narciss’ framework [5] and include: Task
rule (CTRL, elicits the level’s goal and available control functions); Concept
(CONGC, elicits the programming concept needed for the level); Procedural indi-
cations (IMPL, guides on how to implement the concept in Python); Correction
response (SOLU, provides a correct code solution). A formal evaluation study
[2] showed that students (N=190) in the experimental group (with the feedback


https://py-rates.org/

2 Anonymous

system) progressed significantly further in the game compared to a control group
without feedback, with a difference of 1.11 levels or nearly 25%. Students also
expressed positive perceptions of the system, with 77% expressing intent to reuse
it.

2 Interactive Demo Description

This interactive demo offers participants a hands-on opportunity to experience
how adaptive Al feedback can be integrated into an exploratory serious game to
support high school students learning Python. It will highlight both the technical
and pedagogical decisions underlying the design of the system. During the demo,
we will take on the role of a high school student using Pyrates with the Al-
driven adaptive feedback system enabled. The demo involves progressing through
several game levels that require applying Python programming concepts. The
demonstration will include:

- Student Interaction: Using the Pyrates interface, writing and executing
Python code, interacting with game elements, and consulting the programming
memo, simulating an authentic student experience.

-Requesting Feedback: Requesting feedback by clicking the dedicated "Help"
button, and exploring the data sent to the Al policy in real-time.

- Adaptive Feedback Delivery: Exploring the outputs of the Al policy, includ-
ing the predicted feedback type (CTRL, CONC, IMPL, or SOLU), delivered by
the in-game parrot tutor.

- Work-in-progress with Large Language Models: Experimenting with a novel
version of the feedback system based on LLM to render the feedback, and explo-
ration of the prompting strategies. Due to the open-ended nature of the game,
the prompts are built to include detailed information about the game level and
goals, students’ data, and feedback types, for the LLM to generate context-aware
feedback suitable to the game level.

- Code and data: Introducing the open-source code of our Al system, as well
as the publicly available data collected in our study.

3 Conclusion and Future Work

The Pyrates interactive demo illustrates the feasibility and positive impact of an
AT feedback policy that adapts to student code and behavior in an exploratory
serious game that supports the transition from block-based to text-based pro-
gramming. For future work, we aim to enhance the system by improving the
predictive accuracy of the Al policy, exploring its fairness across diverse student
groups, and formally assessing the added value of LLLM-based feedback genera-
tion. Our ongoing goal is to evaluate the system’s impact on student learning
and teacher experience in real classrooms to support the large-scale adoption of
Pyrates.

Acknowledgments. This work was supported by XXX.



Automated Detection of Attention and Retention 3

References

1. Anonmized: Anonmized. In: XXX (2025)

2. Anonmized: Anonmized. In: XXX (2025)

3. Branthome, M.: Pyrates: A serious game designed to support the transition from
block-based to text-based programming. In: European Conference on Technology
Enhanced Learning. pp. 31-44. Springer, Cham (2022)

4. Lin, Y., Weintrop, D.: The landscape of block-based programming: Characteristics
of block-based environments and how they support the transition to text-based
programming. Journal of Computer Languages 67, 101075 (2021)

5. Narciss, S.: Designing and evaluating tutoring feedback strategies for digital learn-
ing. Digital Education Review 23, 7-26 (2013)

6. Sjoberg, S.: Constructivism and learning. International encyclopedia of education
5, 485-490 (2010)



	A Demo of AI Feedback in Pyrates: Supporting Students' Transition to Text-Based Programming 

