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Abstract. While it is common in science education to use interactive simulations 
to support exploratory learning of complex phenomena, students struggle to make 
sense of and reason about these complex phenomena. This challenge partly stems 
from the need to understand how multiple interacting factors produce observed 
outcomes, a process referred to as Multivariable Causality reasoning (MVC 
reasoning).  In this study, we examine the applicability of the Problem-Solving 
before Instruction (PS-I) approach in this context. In PS-I, learners are given 
complex tasks that aid their comprehension of the domain before receiving 
instruction on the target concepts. This study explored the development of MVC 
reasoning through interactive simulations utilizing the PS-I approach with 
students from youth-at-risk schools. At-risk students, defined as those who have 
dropped out of traditional schools, are likely to fail in school and not complete 
certain levels of education. High-school students (N=197) from both mainstream 
and youth-at-risk schools were randomly assigned to either an exploration-first 
condition or an instruction-first condition to learn about Predator-Prey 
relationships. They completed a pretest, followed by an intervention comprising 
an exploration task (Task 1) using a simulation before instruction (exploration-
first) or after (instruction-first condition) the MVC concepts were taught. This 
was succeeded by an exploration task (Task 2) on the same topic and a posttest. 
Findings reveal a compelling and unexpected outcome: engagement with 
interactive simulations seems to yield greater benefits for at-risk students 
compared to their peers in mainstream schools, regardless of the learning 
approach adopted. For future work, the study suggests the integration of an AI-
data-driven scaffold, in terms of an intelligent system that is capable of analysing 
students' real-time interactions within the simulation, identifying instances where 
students struggle in managing the multiple variables, and providing tailored 
strategic guidance aimed at facilitating deeper engagement in MVC.  
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1 Introduction   

Inquiry-based learning is a fundamental approach in science education, designed to 
enhance students' scientific reasoning skills [1,2]. This approach is particularly effective 
in exploring authentic scientific phenomena, where multiple variables interact and 
influence the outcomes. The strategy of investigating complex relationships among 
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factors within these scientific phenomena is called the Multivariable Causality (MVC) 
[3]. MVC reasoning is a scientific skill that addresses why and how various factors 
affect outcomes. It refers to the cognitive ability of learners to comprehend, analyze, 
and reason about complex phenomena where multiple factors act and interact to give 
rise to an observed outcome. For example, when investigating the spread of a pandemic, 
the impact of the vaccination rate on pandemic spread depends on other factors such as 
the transmission rate of the virus in the population, individuals’ recovery rate, etc. 
Studies have found it challenging for students to describe and reason about the 
nonlinear relationship between variables in complex systems [4].  
To help learners develop a comprehensive understanding of MVC, we are building on 
previous studies that suggested using computer-based interactive simulations [5,6]. 
Interactive simulations are visual representations of complex phenomena that 
encompass events and processes [7], offering a means to explore the various 
relationships inherent within complex phenomena [5, 6, 8, 9] by systematically 
manipulating multiple variables in the simulation and observing the outcomes through 
visual graphical representations [7, 8]. Studies have shown that simulation-based 
learning significantly enhances students’ conceptual understanding and learning 
transfer [5, 6]. However, few studies have examined the development of MVC 
reasoning using interactive simulations. Some of these studies were conducted with 
middle- to high-school students in mainstream educational settings [3] and with 
undergraduate students [10]. Thus, the first gap identified is that, to the best of our 
knowledge, no study has explored the development of MVC reasoning through 
interactive simulations among underrepresented students, particularly those from 
youth-at-risk schools, schools that serves students who are at risk of not meeting 
academic or social expectations, or who may struggle to graduate high school. Thus, 
At-risk students are those who have dropped out of mainstream schools and are likely 
to fail in school and not complete a certain level of education [11,12]. They need support 
in developing effective learning strategies, and technology can significantly help them 
in this endeavor [13]. Research indicates that technology not only enhances students' 
self-efficacy, self-confidence, and motivation as they successfully complete designated 
tasks [14] but also has the potential to improve their overall learning outcomes [15]. 
Despite the potential benefits of technology-based learning for at-risk students, 
evidence of these benefits is still lacking, particularly regarding the integration of 
interactive simulations. Additionally, the second identified gap is that it remains unclear 
how the simulations should be used alongside instruction to better support the learning 
of at-risk students.   
To address these two gaps, we investigated the applicability of exploratory learning by 
engaging at-risk students in inquiry learning through interactive simulations while 
learning science. For this aim, we are based on Problem-Solving before Instruction 
approach [16], where learners are given complex tasks that help them make sense of 
the domain before receiving instruction on the target concepts. In the context of this 
study, we explored the effectiveness of the exploration-first approach in terms of 
engaging in an exploration task using simulations prior to receiving direct instruction 
on MVC reasoning. This approach was compared with instruction-first approach, which 
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starts with direct instruction of MVC, followed by an exploration task using simulation. 
It is based on Instruction prior to Problem-Solving (I-PS), where students receive direct 
instruction on the target concepts, followed by implementation through Problem-
Solving. In this study, the two approaches were compared in two educational settings 
(mainstream and youth-at-risk).  
 

2 Goals and research questions  

The purpose of this study is to investigate the impact of adopting the exploration-
first approach using interactive simulations on enhancing learning about MVC among 
students in youth-at-risk high schools. Thus, the effectiveness of two learning 
approaches, exploration-first versus instruction-first, was compared across two types of 
schools: youth-at-risk schools and mainstream schools. This study poses the following 
question:   

RQ. What is the impact of engaging in exploratory learning through interactive 
simulations on the development of MVC reasoning among students from youth-at-risk 
schools compared to those from mainstream schools, across two learning approaches, 
exploration-first and instruction-first?  

 

3 Method  

3.1  Participants  

A total of 197 male high school students (aged 16-18) from the 9th, 10th, 11th, and 
12th grades participated in the study at two urban schools with middle to low 
socioeconomic status. Students from the youth-at-risk school were randomly assigned 
to either the exploration-first condition (n = 50) or the instruction-first condition (n = 
45). Similarly, students from the mainstream school were randomly assigned to either 
the exploration-first condition (n = 60) or the instruction-first condition (n = 42). All 
students and their parents provided consent to participate in the study according to the 
ethical requirements of the Ministry of Education. It's important to note that we included 
students from all high school grades, since MVC skills aren't typically part of the high 
school science curriculum. Thus, we treated grade level as a fixed independent variable 
in all statistical analyses to account for any confounding effects on learning outcomes.  

3.2  Design and procedure   

The study employed a controlled-experimental design with a pretest-intervention-
posttest procedure. Students completed a predation pretest, followed by an intervention 
that involved an exploration task (Task 1) regarding predation using the "Wolf Sheep 
Predation” simulation and instruction on MVC. After the intervention, all groups 
engaged in an exploration task (Task 2) using the "Wolf Sheep Predation” simulation 
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and completed a posttest on Task 2. Table 1 illustrates the design of the study for the 
four groups. The total duration of the study was 1.5 hours. 
 
Table 1. The sequence of learning design for each group    

 
Education setting   Learning approach   Pretest  Intervention  Posttest  

Exploration-first  

 Youth-at-risk   
Instruction-first   

  Pretest  

Task1     Instruction   

 Task 2+  
posttest  

Instruction  Task 1  

Exploration-first  

 Mainstream  
Instruction-first   

Task1   Instruction   

Instruction  Task 1  

 

3.3  Materials   

Learning materials included two exploration tasks and instruction: Task 1 and Task 
2 targeted the exploration of a problem related to wolf and sheep predation within an 
ecosystem using the “Wolf Sheep Predation” simulation. It is an online interactive 
simulation that was developed by combining the “Wolf Sheep Predation” NetLogo 
model [17] and the NetTango platform [18]. Students were asked to explore the 
relationships and interactions among three factors inside an ecosystem, which includes 
two populations, wolves and sheep (sheep reproduce, wolves reproduce, and wolves 
gain energy from food; Figure 1). The simulation allows students to conduct several 
experiments iteratively and investigate the relationships between the three variables and 
how they jointly affect the outcome. Each task includes an explanation question that 
students were asked to provide their reasoning related to whether and how different 
factors could affect the stability of the system (Task 1) and the maximum number of 
wolves in a stable system (Task 2). The instruction phase illustrated phenomena 
consisting of multivariable interactions. It focused on exploring and reasoning about 
how nonlinear relationships between several variables give rise to the observed 
outcomes.   

Figure 1. Wolf Sheep Predation simulation. 
 

  



5  

3.4  Data Sources and Analysis   

Two data collection tools were used in the study: (1) Pretest consisted of one open-
ended item that asked students to describe factors that may affect the ecosystem of 
sheep and wolves, and to explain how these factors may affect the stability of the 
ecosystem. It aims to test students’ prior knowledge of MVC reasoning before the 
intervention. (2) Posttest consisted of one open-ended item that asked students to 
provide reasoning related to whether and how different factors could affect the 
maximum number of wolves in a stable ecosystem based on their exploration of the 
simulation in Task 2.      
To investigate students’ MVC reasoning, their responses to the open-ended items on the 
pretest and posttest were analyzed using a coding scheme developed based on Krist et 
al. [19] and Saba et al. [10], along with a bottom-up analysis of students’ responses. The 
coding scheme comprised three codes and their combinations: (1) Describing: a 
description of the relationship between factors at the population level and their effect 
on an outcome at this level, without explaining how these factors act and interact. (2) 
Unpacking: describing and explaining how factors act and interact at the population 
level and how these factors affect outcomes at the population level. (3) Linking: 
connecting the unpacked or described factors at the population level to an outcome at 
the observed level. A coding scheme for students’ responses was created based on the 
components and the number of factors used; for example, D1 – describing one factor, 
D1L: Describing and Linking one factor. Scores range from 0 to 12: None – 0; D1 – 1; 
D2 – 2; D3 – 3; D1L – 4; D2L – 5; D3L – 6; U1 – 7; U2 – 8; U3 – 9; U1L – 10; U2L – 
11; U3L – 12.  Following, students were provided with scores in the pretest and posttest.   
 

4 Results  

    Pre-Intervention difference. Levene’s Test was first conducted to assess the 
assumption of homogeneity of variance. Given that Levene’s Test was significant, F(3, 
193) = 11.88, p < .001, indicating unequal variances across groups, Welch’s ANOVA 
was employed as a robust alternative to the traditional three-way ANOVA. Results of 
the Welch’s ANOVA revealed a significant difference between school types, F(1, 196) 
= 5.80, p = .017, indicating that students in youth-at-risk school and mainstream school 
differed significantly at pretest. However, no significant differences were observed for 
instructional approach, F(1, 196) = 0.02, p = .903, or grade level, F(1, 196) = 1.63, p = 
.188. Table 2 presents the means and standard deviations of the pretest across schools 
and learning approaches.  
 
Learning gain from pre- to posttest. To examine the effect of school type and learning 
approach on students' improvement from pre- to posttest across school and learning 
approach, A 2 (Time: pretest, posttest) x 2(School) x 2(Learning approach) repeated 
measures ANCOVA statistical test was conducted to examine students' learning gain 
related to MVC reasoning from pretest to posttest. Time was treated as a within-subjects 
factor, while school and learning approach were between-subjects factors. The grade 
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level was included as a covariate. Findings revealed a significant main effect only for 
Time with a small effect size, indicating that students improved their MVC reasoning 
from pretest to posttest, F(1, 192) = 8.949, p = 0.003, ηp

2  = 0.045. However, Findings 
regarding interactions effects revealed a significant interaction effect only for Time x 
School with a medium effect size, F(1, 192) = 11.122, p = 0.001, ηp

2  = 0.055     
indicating that students from youth-at-risk demonstrated significantly superior 
improvement in their MVC reasoning from pretest to posttest compared to students 
from the mainstream school regardless learning approach and grade level (Figure 2).        
   
           Table 2. Means and Standard Deviations for pretest and posttest by school type 

and learning approach  

School Type  Learning approach  N   Pretest  
M (SD)  

Posttest  
M (SD)  

At-risk  Exploration-first  50  1.28(1.67) 4.12 (3.68) 

At-risk  Instruction-first  45  0.87(0.97) 4.62 (3.34) 

Mainstream Exploration-first  60  1.60(2.68) 2.98 (3.40) 

Mainstream Instruction-first  42  2.17(2.95) 3.62 (3.20) 

 

Figure 2. The interaction between Time and School from pretest to posttest 

5 Scholarly Significant    

This study contributes to the existing literature on the discussion of cultivating general 
domain science skills among youth-at-risk schools through exploratory learning. It 
addresses critical theoretical gaps concerning the effectiveness of technology-based 
learning interventions for at-risk students, particularly in engaging them through 
exploratory learning that utilizes interactive simulations. This study is the first to 
demonstrate that at-risk students can significantly benefit from an approach that 
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combines exploratory learning with interactive simulations to enhance their scientific 
skills, despite having significantly lower prior knowledge of MVC compared to 
students in the mainstream school.   
Notably, our findings reveal a compelling and unexpected outcome: engagement with 
interactive simulations seems to yield greater benefits for at-risk students compared to 
their peers in mainstream schools. These results may be more closely linked to 
prolonged socio-educational neglect and systemic inequities rather than low cognitive 
abilities. They can be attributed to the necessity for at-risk students to participate in a 
more stimulating and motivational learning environment that encourages self-
expression and fosters a sense of agency in their educational experiences. Moreover, 
this underscores the importance of providing appropriate pedagogical support and 
enriching learning environments, which can enable at-risk students to realize their 
potential for significant academic achievement. In light of this context, this study 
suggests the integration of an AI-data-driven scaffold.  This involves the development 
of an intelligent system that is capable of analyzing students' real-time interactions 
within the simulation environment. The system is designed to identify instances where 
students struggle in managing the multiple variables involved in the system. Moreover, 
it provides tailored strategic guidance aimed at facilitating deeper engagement in MVC.  
Regarding the most effective learning approach for integrating interactive simulation, 
our results indicate that the sequence of the learning approach, whether exploration 
occurs before instruction or instruction is followed by exploration, does not 
significantly impact learning outcomes for students in either group.   
While these results are preliminary, they pave the way for further discussion on the 
effects on students' performance in a transfer task, where they were introduced to a new 
task in a different context and used a different simulation. Additionally, we will examine 
the intermediate knowledge [20] gained in Task 1 during the intervention and its impact 
on students' performance in the posttest, exploring how this knowledge may serve as a 
predictor for subsequent learning outcomes. Practically, this study will provide 
significant insights for teachers, suggesting the integration of interactive simulations as 
a core element in designing scientific learning environments aimed at supporting at-risk 
students.   
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