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Abstract. Students often struggle with constructing models of system behaviour, 
particularly in open modelling tasks where there is no single correct answer. The 
challenge lies in providing effective support that helps students develop high-
quality models while maintaining their autonomy in the modelling process. This 
study presents a procedure for assessing the quality of student-generated 
qualitative models in open modelling tasks, based on three characteristics: 
correctness, parsimony, and completeness. The procedure was developed and 
refined using student-generated models from two secondary school tasks on 
thermoregulation and sound properties. The findings contribute to the 
development of automated support systems that guide students through open 
modelling tasks by focusing on quality characteristics rather than adherence to a 
predefined norm model. 
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1 Introduction 
Frameworks for secondary education curricula emphasize the importance of students 
learning about system behaviour by modelling [1]. Through modelling, students not 
only develop domain-specific knowledge and modelling skills but also acquire 
epistemological understanding of the nature of models, their purposes, the modelling 
process, and the evaluation of models [2,3]. A common approach to modelling involves 
students using simulation software with a formal language to describe system behaviour 
[4-7]. However, students often struggle with formal expression of system behaviour 
[5,8], and limited domain knowledge leads to trial-and-error strategies rather than 
constructive modelling, resulting in minimal learning [9]. 

Qualitative models are promising for learning to model system behaviour. They 
describe system behaviour using a symbolic, non-numerical vocabulary that aligns 
closely with everyday human reasoning [10]. Previous research has shown that 
constructing qualitative models helps students understand domain-specific systems 
while simultaneously developing generic modelling skills [11]. Current modelling 
software typically offers automated support to students during model construction by 
comparing their models to a predefined norm model [12,13]. This support is triggered 



2  F. Author, S. Author, and T. Author 

when the models created by the students deviate from the norm model, which serves as 
the correct reference for the modelling task. 

A crucial next step involves enabling students to construct their own qualitative 
models without a predefined norm model. In such a modelling task, "the right answer" 
is not fixed; students must determine how best to describe the domain-specific 
behaviour of the system using the formal vocabulary. This shift is essential for fostering 
deeper understanding of modelling and models, as students engage with the 
epistemological challenges of model construction [2,3]. However, supporting students 
in such open-ended tasks remains a challenge – especially as students’ models may vary 
widely and evolve unpredictably. 

This paper presents a procedure for assessing the quality of student-generated 
qualitative models, serving as a foundation for providing targeted support. Section 2 
details the vocabulary specific to qualitative models in DynaLearn, the software used 
in this study. Section 3 discusses key quality characteristics and the types of knowledge 
required for validation. Section 4 describes the method, Section 5 the assessment 
procedure itself, and Section 6 the results. Section 7 presents the conclusions and 
discussion. 

2 DynaLearn 
DynaLearn (https://dynalearn.nl/) offers a qualitative vocabulary for modelling system 
behaviour (see Fig 1). Five distinct levels are designed to progressively support the 
modelling of increasingly complex behaviour [14]. This study focuses on level 2, a 
level commonly used in lower secondary education [15]. At this level, students work 
with five modelling ingredient types: entities, configurations, quantities, causal 
relationships, and values. 

 

Fig. 1 Qualitative model describing a part of 
the thermoregulation system. The model 
(LHS) includes four entities: body, 
hypothalamus, anterior, and skin. These 
entities are structurally related through three 
configurations; for example, hypothalamus 
‘has’ anterior. The model also features two 
quantities: signal and sweating. There is a 
positive relationship between these quantities. 
The initial value of impulse is set to 
increasing (not shown). 
The state graph (RHS) shows that the 
simulation results in a single state: as signal 
increases, sweating also increases. 

Entities represent physical objects or abstract ideas within the system. They can be 
structurally related through configurations. Entities can have quantities, which are 
changeable properties that can increase, remain constant, or decrease. Quantities can 
have causal relationships. At level 2, these are categorized as positive (+) or negative 
(−) relationships. A positive proportional causal relationship signifies that the change 
in the affected quantity occurs in the same direction as the change in the causing 
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quantity. Conversely, a negative proportional causal relationship indicates that the 
changes are in opposite directions, e.g., if the causing quantity increases, the affected 
quantity decreases. The model can be simulated, using qualitative reasoning algorithms, 
which infer possible system states based on a given scenario [16]. Students must define 
a scenario by assigning initial values to the system. At level 2, this involves specifying 
the initial changes for quantities at the start of the causal chain. 

3 Quality characteristics and knowledge sources 
The quality of a student-generated model can be assessed based on three characteristics 
correctness, parsimony and completeness [17]. Correctness ensures that the model 
accurately represents the system being described. Completeness means that all 
necessary components are included so that the model sufficiently captures the intended 
system behaviour. Parsimony ensures that the model does not contain redundancies, 
making it as simple as possible while still being scientifically accurate. To assess these 
characteristics, we use three types of knowledge. Domain knowledge is required to 
assess whether a model accurately represents the system being described. This includes 
understanding which concepts belong to different ingredient types within the qualitative 
vocabulary. For instance, sound is an entity, while amplitude is a measurable property 
of sound and thus a quantity. Knowledge of the vocabulary is required to assess whether 
a model adheres to the formal rules of qualitative modelling, maintaining logical 
consistency. For example, all quantities in a model should be meaningfully integrated 
through causal relationships. Knowledge about the purpose of the model is necessary 
to assess whether the model includes appropriate details for the given learning context. 
A model that includes all possible relevant information may be scientifically correct 
but pedagogically ineffective if it overwhelms the student with excessive detail. For 
example, a thermoregulation model for lower secondary students should include heat 
loss and gain mechanisms but may omit molecular-level details. 

4 Method 
Participants. The study involved 24 lower secondary school students from two 
schools. At school A, 10 students worked on the sound task (see below for descriptions 
of the tasks), while at school B, 14 students worked on the thermoregulation task. They 
worked independently for 30 minutes, with access to instructional videos explaining 
model construction, a printed help sheet detailing ingredient functions, and the 
opportunity to ask questions. In a prior lesson, students had constructed a level 2 model 
on a different topic with norm-based support, ensuring familiarity with the modelling 
ingredients. Sessions took place on school premises but outside the regular classroom 
setting, with two students participating simultaneously. A research team member 
facilitated the sessions, providing dedicated support and maintaining a controlled 
environment free from classroom dynamics or peer distractions. The study was 
approved by the institutional ethics committee, and all participants and their legal 
guardians gave informed consent. 

Modelling tasks. We designed two tasks, both topics commonly in lower secondary 
education. The sound task described how sound originates from a source (e.g., a guitar 
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string), travels through a medium (air), and is detected by a receiver (e.g., the human 
ear). Key properties included amplitude, which determines perceived volume and is 
influenced by the force of the guitar stroke, and frequency, which affects pitch and 
depends on the string’s length, thickness, and tension. Students were required to model 
how variations in these properties impact the observed sound at the receiver. The 
thermoregulation task required students to construct a model of how the human body 
maintains internal temperature. The system description included temperature sensors in 
the skin that detect changes in temperature and the hypothalamus, which regulates body 
temperature by responding to these signals. The anterior hypothalamus triggers heat 
dissipation responses such as sweating and vasodilation, while the posterior 
hypothalamus induces heat conservation responses like shivering and vasoconstriction. 

5 Assessment procedure 
Figure 2 presents the general workflow for assessing the quality of student-generated 
models. The assessment process consists of two levels: ingredient assessment and 
whole-model assessment. At the ingredient level, when a student creates an ingredient, 
its correctness is assessed first, followed by the assessment of its parsimony and then 
its completeness. Once an ingredient has passed the assessment, the procedure moves 
to the whole-model level, where the completeness of the overall model is assessed. 

 
Fig. 2. Procedure for assessing the quality of student-generated qualitative models. 

The specific checks required for each assessment step depend on the type of 
ingredient. Table 1 outlines these checks using the three quality characteristics: 
correctness, parsimony, and completeness. For example, correctness of entities is 
determined by two checks: (i) whether the entity has a name, as newly created 
ingredients should be given a name, and (ii) whether it is either a physical object or an 
abstract concept. The former check relies on knowledge of the vocabulary, while the 
latter requires domain knowledge. Note that, the checks are ordered, for instance, name 
assessment precedes type assessment. This helps managing the support, such as 
prompting students for ‘giving a name’ before asking about parsimony. 

Next, parsimony is assessed. First, its relevance to the system is evaluated, requiring 
both domain knowledge and vocabulary knowledge. The entity should also represent a 
singular concept. For example, naming it Ear is a receiver combines two concepts, 
making it not singular. Additionally, uniqueness is evaluated to determine whether the 
entity appears more than once in the model. For instance, including two entities named 
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blood vessel may be unnecessary. However, unlike correctness, parsimony checks do 
not necessarily mandate changes. Finally, completeness checks whether the entity is 
related to another entity or has a quantity. This assessment relies on knowledge of the 
vocabulary. Similar checks hold for each model ingredient. See Table 1 for details. 

Table 1. Quality checks for each ingredient type, associated knowledge type, and student-
generated model scores for the sound thermoregulation tasks. 

Ingredient Quality Check Short description Knowledge  St Tt 
Entity   n = 21 89 
 Correct Name Has name V 21 89 
  Type Is physical object/abstract idea D 21 84 
 Parsimony Relevant Is relevant D+P 21 84 
  Singular Is singular concept D 17 69 
  Unique Is unique D 21 79 
 Complete Related Has quantity/configuration V 21 84 
Configuration   n = 7 54 
 Correct Name Has name V 7 46 
  Type Describes structural relation D 3 3 
  Consensus Scientific consensus D 3 3 
  Direction Description in correct direction D 2 1 
 Parsimony Unique Is unique D 2 1 
Quantity   n = 69 97 
 Correct Name Has name V 69 92 
  Type Is measurable D 57 57 
  Entity Is property of its entity D 54 49 
 Parsimony Singular Is singular concept D 40 44 
  Unique Is unique D 50 41 
  Relevant Is relevant D+P 51 42 
  Atomic Quantities separated D+P 53 47 
 Complete Related Related to other quantity V 48 38 
Causality   n = 56 62 
 Correct Type Both quantities of correct type D 29 20 
  Loop No feedback loop V 29 20 
  Consensus Scientific consensus D 29 12 
  Direct Is direct effect D 29 12 
  Direction Effect in correct direction D 29 12 
  Sign Sign is correct (+/-) D 29 10 
 Parsimony Relevant Is relevant P 29 10 
Values    n = 9 15 
 Correct Conflict Initial values do not conflict V 9 14 
 Parsimony Redundant No initial values in causal chain V 9 13 
 Complete Initial Initial value at start causal chain V 3 8 
Note. St = Sound task scores (N = 10); Tt = Thermoregulation task scores (N = 14); D = Domain 
knowledge; P = Knowledge of the purpose; V = Knowledge of the vocabulary; Scores of student-
generated models for values are presented on model level (see text). 
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6 Results 
We applied the assessment procedure to score the student-generated models for the 
sound task and the thermoregulation task. Table 1 presents the total scores. Figure 3 
shows a student-constructed model. We use this to illustrate the assessment procedure. 
The model includes five entities: body, blood, cold and heat regulation, hypothalamus, 
and sweat gland. These entities correctly represent physical objects or abstract concepts 
and are relevant, singular, and unique. Each entity is connected, either through a 
configuration or an associated quantity. There are two configurations: one between 
body and blood and another between body and cold and heat regulation. However, 
these configurations lack assigned names, which prevents further assessment of their 
correctness. There are 6 quantities. The entity cold and heat regulation has temperature 
associated with it. While its type is correct (i.e., it is measurable), temperature is not a 
measurable property of this entity, making it incorrect. The entity hypothalamus has 
two quantities named electrical signals. While both are correct, singular, and relevant, 
one is redundant, making the model less parsimonious. Additionally, the quantity 
electrical signals on the upper right of the model is not related to any other quantity, 
making the ingredient incomplete. The quantity sweat production is correct, 
parsimonious and complete. The quantity temperature of the entity sweat gland is 
correct, but it is not relevant within the context of thermoregulation. In contrast, the 
quantity temperature of the entity blood is correct and relevant. There is a positive 
causal relationship between temperature of the entity cold and heat regulation and 
electrical signals of the entity hypothalamus. Correctness of this relationship cannot be 
assessed as the quantity temperature is not a measurable property of cold and heat 
regulation. A positive causal relationship exists between electrical signals of the entity 
hypothalamus and sweat production of the entity sweat glands. This is scientifically 
correct, relevant, direct, and correctly assigned in terms of direction and sign. The 
positive relationship between sweat production and temperature of the entity sweat 
glands is scientifically correct, although the effect is minor, making the relationship 
less relevant. Finally, the positive relationship between temperature of the entity sweat 
glands and temperature of the blood is scientifically incorrect (the effect is negligible). 
The quantity temperature of the entity cold and heat regulation is at the start of the 
causal chain and has an initial value assigned. No initial values are set within the causal 
chain. This is correct and prevents conflicts. Note, even though temperature is not a 
measurable property of the entity cold and heat regulation, the assessment of initial 
values remains possible, as it relies on knowledge of the qualitative vocabulary. 

Whole-model. The assessment of whole-model completeness also reveals gaps in 
the model. For example, the model lacks separate entities for the anterior and posterior 
hypothalamus, as well as an entity for blood vessels with an associated quantity for its 
diameter. Consequently, the model also misses the causal relationships that 
demonstrate how signals from the hypothalamus affect the diameter of blood vessels. 
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Fig. 3. Student-constructed model of the thermoregulation system. 

7 Conclusion and discussion 
We present a procedure for assessing the quality of student-generated qualitative 
models of system behaviour. The procedure offers a structured way to assess individual 
modelling ingredients (such as entities, quantities, and causal relationships) as well as 
the completeness of the model. Modelling ingredients are assessed using checks for 
correctness, parsimony, and completeness, with each check linked to a specific type of 
knowledge – domain knowledge, vocabulary knowledge, or knowledge of the purpose 
of the model. The procedure was applied to student-generated models from two 
modelling tasks: one on thermoregulation and one on properties of sound. The results 
demonstrate its usability and provide insights into common student difficulties when 
constructing models. These insights are valuable for understanding how students apply 
qualitative reasoning, where they tend to make systematic mistakes, and which aspects 
of the modelling process may benefit most from support. As such, this paper lays the 
groundwork for developing automated support systems that guide students in open 
modelling tasks. 

While the assessment procedure developed in this study (in principle) employs a 
content-agnostic approach, there are several limitations to consider. The sample size 
was relatively small, which limits the generalizability of findings related to student 
performance and the specific modelling challenges observed. Although the procedure 
itself is not tied to any specific domain and can be applied across topics, the feasibility 
of fully automating the assessment remains an open question. In particular, the use of 
AI to supply the knowledge required for checks on correctness, parsimony, and 
completeness introduces several challenges – such as the reliability of AI-generated 
feedback (e.g., missing subtle domain-specific nuances), alignment with the qualitative 
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modelling vocabulary, and ensuring that the support remains pedagogically 
appropriate. However, rapid developments in this field offer promising avenues for 
future application and scalability. An alternative, more lightweight solution may lie in 
prompting students with reflective questions during modelling. This approach is easier 
to implement, as it leverages student reasoning and teacher facilitation rather than 
complex back-end automation and may already yield meaningful improvements in 
model quality and student thinking. 

Future research should focus on developing and testing automated feedback 
mechanisms based on this assessment procedure. Note that, an ideal support system 
should also guide students through the broader modelling process – constructing, 
testing, simulating, reflecting, and refining [9]. Future work should explore how 
automation can facilitate this cycle. Additionally, integrating automated assessment 
with teacher guidance remains an important direction to ensure that human expertise 
complements machine-driven validation [18]. 
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